STRUCTURAL CALCULATIONS FOR:

TEKIELA RESIDENCE

6520 82ND AVE SE
MERCER ISLAND, WA

ARCHITECT: MCCLELLAN ARCHITECTS

JANUARY 30, 2024

DESIGN CRITERIA

DEAD LOADS

ROOF	
Composition	2.5 psf
3/4" Plywood	2.4 psf
TJI @ 16" o.c.	2.3 psf
Insulation	1.0 psf
Gyp Board (5/8")	2.8 psf
MEP	1.5 psf
Solar Panels	5.0 psf

Total 17.5 psf
Use 20.0 psf

LIVE LOADS/OCCUPANCY

Risk Category	II	ROOF LIVE		FLOOR LIVE		DECK LIVE	
Roof Deck	No	Snow =	25 psf	Occupancy =	40 psf	Occupancy =	60 psf
Common Access	No			Stair/Corridor =	40 psf		

SEISMIC CRITERIA ASCE $7-16 \mathrm{Ch} .11$ \& Ch. 12

Imp. Factor $=$	1.00	Seismic Ht, hn $=$	15 ft
Site Class $=$	$\mathrm{D}(\mathrm{Geo})$	T, Building $=$	0.2
R Value $=$	6.5	Ts $=$	0.6

Geo. Ground Hazard?
$\mathrm{S}_{\mathrm{s}}=1.464$
$S_{1}=0.507$
$\mathrm{S}_{\mathrm{ms}}=1.464$
$S_{m 1}=$ NULL $\times 2 / 3=\mathbf{S}_{\mathbf{d} 1}=$ NULL Eqn. 11.4-4

$\mathrm{C}_{\text {SULT }}=$	0.150
$\mathrm{C}_{\text {SALL }}=$	0.105

$\mathrm{T} / \mathrm{Ts}=0.245 \leq \quad 1.5$
Okay, Cs Eqn. 12.8-2

SEISMIC WEIGHT ASCE 7-16 12.7.2

Partitions $=15 \mathrm{psf}$
*Roof weight = 1/2 Partition + Roof DL
*Floor weight = Full Partition + Floor DL
ROOF 25.0 psf
No w/ASCE 11.4.8 Excep's
$F_{a}=1.000 \quad$ Table 11.4-1
$F_{v}=$ NULL Table 11.4-2
Eqn. 11.4-3

WIND CRITERIA ASCE 7-16 Ch. 27 Directional Procedure

V	$=98 \mathrm{mph}$	K_{d}	$=0.85$
Exposure	$=$	B	G

Worksheet
Roof Slope $=1: 12=4.8^{\circ}$

PRESSURE (PSF) $\mathrm{q}=0.00256 \mathrm{~K}_{\mathrm{z}} \mathrm{K}_{\mathrm{zt}} \mathrm{K}_{\mathrm{d}} \mathrm{V}^{2}$								
Ht	K ${ }_{\text {z }}$	q_{z}	$0.6 \times \mathrm{qz}^{1}$	q_{h}	P_{ww}	$\mathrm{P}_{\text {Lw }}$	$P_{\text {wall }}$	$\mathrm{P}_{\text {Roof }}$
0-15	0.57	11.9	7.1	7.1	4.9	3.0	7.9	N/A
15-20	0.62	13.0	7.8		5.3	3.0	8.3	
20-25	0.66	13.8	8.3		5.6	3.0	8.7	
25-30	0.70	14.6	8.8		6.0	3.0	9.0	
30-35	0.73	15.3	9.2		6.2	3.0	9.3	
35-40	0.76	15.9	9.5		6.5	3.0	9.5	
40-45	0.79	16.5	9.9		6.7	3.0	9.8	
45-50	0.81	16.9	10.2		6.9	3.0	9.9	

$$
\begin{array}{rrr}
\text { PRESSURE COEFFICIENTS }(\mathbf{C p}) \\
\text { Windward Wall }= & 0.8 & \text { Windward Roof }=\text { N/A } \\
\text { Leeward Wall }= & -0.5 & \text { Leeward Roof }=\text { N/A }
\end{array}
$$

SEISMIC DESIGN CATEGORY IBC 1613.2.5
Seismic DC= D

$1 / 30 / 2024$	
Date	0463-2023-05
Proi. No.	RJG
Desian	
Sheet	DC1

Address:

6520 82nd Ave SE Mercer Island, Washington 98040

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16
Risk Category: II
Soil Class: D - Stiff Soil

Latitude: 47.544584
Longitude: -122.228506
Elevation: 319.0423662034499 ft (NAVD 88)

Wind

Results:

Wind Speed	98 Vmph
10-year MRI	67 Vmph
25 -year MRI	74 Vmph
50 -year MRI	78 Vmph
100-year MRI	83 Vmph

Data Source:
Date Accessed:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2 Fri Jan 052024

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Seismic

Site Soil Class: D-Stiff Soil

Results:

$\mathrm{S}_{\mathrm{S}}:$	1.464	$\mathrm{~S}_{\mathrm{D} 1}:$	N / A
$\mathrm{S}_{1}:$	0.507	$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{~F}_{\mathrm{a}}:$	1	$\mathrm{PGA}:$	0.627
$\mathrm{~F}_{\mathrm{V}}:$	N / A	$\mathrm{PGA}_{\mathrm{M}}:$	0.69
$\mathrm{~S}_{\mathrm{MS}}:$	1.464	$\mathrm{~F}_{\mathrm{PGA}}:$	1.1
$\mathrm{~S}_{\mathrm{M} 1}:$	N / A	$\mathrm{I}_{\mathrm{e}}:$	1
$\mathrm{~S}_{\mathrm{DS}}:$	0.976	$\mathrm{C}_{\mathrm{V}}:$	1.393

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed:
Fri Jan 052024
USGS Seismic Design Maps

AMERICAN SOCIETY OF CIVIL ENGINEERS

Snow

Results:

Ground Snow Load, p_{g} :
Mapped Elevation:
Data Source:
Date Accessed:
$16 \mathrm{lb} / \mathrm{ft}^{2}$
319.0 ft

Fri Jan 052024
Statutory requirements of the Authority Having Jurisdiction are not included.
Snow load values are mapped to a 0.5 mile resolution. This resolution can create a mismatch between the mapped elevation and the site-specific elevation in topographically complex areas. Engineers should consult the local authority having jurisdiction in locations where the reported 'elevation' and 'mapped elevation' differ significantly from each other.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

$K z t=1.00$

MALSAM
TSANG
STRUCTURAL
ENGINEERING

Tekiela Residence		
Proiect		
	6520 82nd Ave SE	
	Mercer Island, WA	

	$1 / 30 / 2024$
Date	
Proi. No.	0463-2023-05
Design	RJG
Sheet	DC3

22 South Jackson
Suite 210
Seattle, WA 98104
+206.789.6038
f 206.789.6042

6520 82nd Ave SE

Tekiela Residence

Mercer Island, WA

$1 / 30 / 2024$	
Date	
	0463-2023-05
Proi. No.	
	RJG
Design	
Sheet	DC4

Tekiela Residence

6520 82nd Ave SE

Mercer Island, WA

$1 / 30 / 2024$	
Date	
Proi. No.	
	RJG3-2023-05
Design	
Sheet	DC5

TOH: 355' @ 0.77 mi

$1 / 30 / 2024$	
Date	
Proi. No.	0463-2023-05
Design	RJG
Sheet	DC6

CASE \#1: (C1)

CASE \#2: (C2)

CASE \#3: (C3)

CASE \#4: (C4)

CASE \#5: (C5)

CASE \#6: (C6)

CASE \#7: (C7)

$1 / 30 / 2024$	
Date	
Proi. No.	0463-2023-05
Design	RJG
Sheet	DC7

LATERAL ANALYSIS

Seismic:

Level	Area $\left(\mathrm{ft}^{2}\right)$	Unit Wt (psf)	Weight (kips)	Avg Ht (ft)	Wi•Hi $(\mathrm{k}-\mathrm{ft})$	Distrib. $(\%)$	Shear, V (kips)	Uniform (plf)
Roof	4900	25	122.50	15	1837.50	100%	$\mathbf{1 2 . 8 7}$	$125 / 334$

Totals: $\quad \xlongequal{122.50 \mathrm{k}} \quad \underline{\underline{1837.50}} \quad 100 \% \quad \underline{\underline{12.87 \mathbf{k}}}$
Base Shear:

$$
\begin{aligned}
V & =C_{S} \times W \\
& =0.15 \times 122.5 \mathrm{k}=18.38 \mathrm{kips} \text { (Ultimate) } \\
& =0.105 \times 122.5 \mathrm{k}=12.87 \mathrm{kips} \text { (Allowable) }
\end{aligned}
$$

Wind:

North-South Exposure

Level	Trib (ft)	Wind Load $(\# / \mathrm{ft})$	Length (ft)	Shear, V (kips)
Roof	7.5	$7.5^{\prime} \times 7.9=60$ plf	103	$\mathbf{6 . 1 8}$

6.18 k

East-West Exposure

Level	Trib (ft)	Wind Load $(\# / \mathrm{ft})$	Length (ft)	Shear, V (kips)
Roof	7.5	$7.5^{\prime} \times 7.9=60 \mathrm{plf}$	38.5	$\mathbf{2 . 3 1}$

122 South Jackson
Suite 210
Seattle, WA 98104
t 206.789.6038
f 206.789.6042

Tekiela Residence	1/30/2024
Project	Date
6520 82nd Ave SE	0463-2023-05
	Proi. No.
Mercer Island, WA	RJG
	Design
	L-1

Tekiela Residence
 6520 82nd Ave SE

Mercer Island, WA

	$1 / 8 / 2024$
Date	
Proi. No.	0463-2023-05
	RJG
Design	

Roof: $13^{\prime}-0^{3}$ Plate

122 South Jackson
Suite 210
Seattle, WA 98104
$t 206.789 .6038$
f 206.789 .6042

Tekiela Residence
Proiect
Mercer Island, WA

	$1 / 8 / 2024$
Date	$0463-2023-05$
Proli. No.	
Design	RJG

SIMPSON STRONG-TIE COMPANY INC.

5956 W. Las Positas Blvd., Pleasanton, CA 94588.
www.strongtie.com

Job Name: 6520 82nd Ave SE
Wall Name: Front
Application: Standard Wall on Concrete

Design Criteria:

* 2018 International Bldg Code
* Seismic R=6.5
* 2500 psi concrete
* ASD Design Shear $=1780 \mathrm{lbs}$
* Nominal wall height $=13 \mathrm{ft}$

Selected Strong-WalI® Panel Solution:

Model	Type	W (in)	H (in)	(in)	Sill Anchor	End Anchor Bolts	Total Axial Load (lbs)	Actual Uplift (lbs)
WSWH24×13	Wood	24	156	3.5	N/A	$2-1^{\prime \prime}$	100	7884 lb
WSWH24×13	Wood	24	156	3.5	N/A	$2-1^{\prime \prime}$	100	7884 lb

Actual Shear \& Drift Distribution:

Model	RR Relative Rigidity	Actual Shear (lbs)	Allowable Shear (lbs)	Actual / Allow Shear	Actual Drift (in)	Drift Limit (in)
WSWH24×13	0.50	890	\leq	3110 OK	0.29	0.19
WSWH24×13	0.50	890	\leq	3110 OK	0.29	0.19

Notes:

1. Strong-Wall High-Strength Wood Shearwalls have been evaluated to the 2021 IBC/IRC. See www.strongtie.com for additional design and installation information.
2. Anchor templates are recommended for proper anchor bolt placement, and are required in some jurisdictions.
3. The applied vertical load shall be a concentric point load or a uniformly distributed load not exceeding the allowable vertical load. Alternatively, the load may be applied anywhere along the width of the panel if imposed by a continuous bearing vertical load transfer element such as a rimboard or beam. For eccentric axial loads applied directly to the panel, the allowable vertical load shall be divided by two.
4. Panels may be trimmed to a minimum height of $74 \frac{1}{2} 2^{\prime \prime}$.

Disclaimer:

It is the Designer's responsibility to verify product suitability under applicable building codes. In order to verify code listed applications please refer to the appropriate product code reports at www.strongtie.com or contact Simpson Strong-Tie Company Inc. at 1-800-999-5099.

SIMPSON STRONG-TIE COMPANY INC.
(800) 999-5099

SIMPSON
5956 W. Las Positas Blvd., Pleasanton, CA 94588.
www.strongtie.com

Job Name: 6520 82nd Ave SE
Wall Name: Front
Application: Standard Wall on Concrete

Design Criteria:

* Stemwall - Perimeter
* 2018 International BIdg Code
* Seismic R=6.5
* 2500 psi concrete

Anchor Solution Details:

Stemwall Extension Installation

Stemwall Installation

Anchor Solution Assuming Uncracked Concrete Design:

Model	W	de	B	Anchor Bolt	Strength
WSWH24×13	28	10	20	WSWH-AB	Standard

SIMPSON STRONG-TIE COMPANY INC.
(800) 999-5099

SIMPSON
5956 W. Las Positas Blvd., Pleasanton, CA 94588.
www.strongtie.com

Notes:

1. Anchorage designs conform to $\mathrm{ACl} 318-19, \mathrm{ACl} 318-14$ and 318-11 Appendix D with no supplementary reinforcement for cracked and uncracked concrete as noted.
2. Anchorage strength indicates required grade of anchor bolt. Standard (ASTM F1554 grade 36) or High Strength (HS)(ASTM A193 Grade B7).
3. Seismic indicates Seismic Design Category C though F. Detached $1 \& 2$ family dwellings in SDC C may use wind anchorage solutions. Seismic anchorage designs conform to $\mathrm{ACI} 318-11$ section D.3.3.4.3 and ACI 318-14 section 17.2.3.4.3 and $\mathrm{ACl} 318-19$ section 17.10.5.3.
4. Foundation dimensions are for anchorage only. Foundation design (size and reinforcement) by others. The registered design professional may specify alternate embedment, footing size or anchor bolt.

Hairpin Installation
(Garage curb shown, other footing types similar)

Shear Anchorage Solutions

Strong-Wall High-Strength Wood Shearwall Model No.	$L_{t} \text { or } L_{h}$ (in.)	Seismic ${ }^{3}$		Wind ${ }^{4}$			
		Shear Reinforcement	Minimum Curb/ Stemwall Width (in.)	Shear Reinforcement	Minimum Curb/ Stemwall Width (in.)	ASD Allowable Shear Load, V (Ib.) ${ }^{7}$	
						Uncracked	Cracked
WSWH12	101/4	(1) \#3 Tie	6	See Note 7	6	1,080	770
WSWH18	15	(2) \#3 hairpins ${ }^{5,6}$	6	(1) \#3 hairpin	6	Hairpin reinforcement achieves maximum allowable shear load of the Strong-Wall ${ }^{\oplus}$ WSWH	
WSWH24	19	(2) \#3 hairpins ${ }^{5}$	6	(2) \#3 hairpins ${ }^{5}$	6		

1. Shear anchorage designs conform to $\mathrm{ACl} 318-14$ Chapter 17 and $\mathrm{ACI} 318-11$ and assume minimum 2,500 psi concrete.
2. Shear reinforcement is not required for interior foundation applications (panel installed away from edge of concrete), or braced wall panel applications.
3. Seismic indicates seismic design category C through F. Detached one-and two-family dwellings in SDC C may use wind anchorage solutions. Seismic shear reinforcement designs conform to ACl 318-14, section 17.2.3.5.3 and ACl 318-11 section D.3.3.5.
4. Wind includes seismic design category A and B and detached one- and two-family dwellings in SDC C
5. Additional ties may be required at garage curb or stemwall installations below anchor reinforcement per designer.
6. Use (1) \#3 hairpin for WSWH18 when standard strength anchor is used.
7. Use (1) \#3 tie for WSWH12 when panel design shear force exceeds tabulated anchorage allowable shear load.
. No. 4 grade 40 shear reinforcement may be substituted for WSWH shear anchorage solutions.
8. Concrete edge distance for anchors must comply with $\mathrm{ACl} 318-14$ section 17.7.2 and $\mathrm{ACl} 318-11$ section D.8.2

10 . The designer may specify alternate shear anchorage.
STRONG-WALL ${ }^{\circledR}$ WSWH SHEAR ANCHORAGE SCHEDULE AND DETAILS

TPICAL ROOF FRAMING

WEST:

$$
\begin{aligned}
& C_{3}^{3}=12.5 \\
& A_{2}=3 \\
& W_{1}=W_{2}=0.06 \\
& P=0 \\
& R_{1}=0.4 \\
& R_{2}=0.6 \\
& M=1.12<5.16 \\
& V=0.4<22 \\
& \Delta T=0.09=41667 \\
& 14^{\prime \prime} T J 1210^{\prime} \text { SAT } 16^{\circ} 60 \\
& \hline \hline
\end{aligned}
$$

$$
c s
$$

$$
L=23.5
$$

$$
A=3
$$

$$
w_{1}=w_{2}=0,06
$$

$$
P=0
$$

$$
R_{1}=0.7
$$

$$
R_{2}=0.9<8.4
$$

$$
\begin{aligned}
2 & =4<8.4 \\
v & =0.7<2.2
\end{aligned}
$$

$$
\Delta T=0.75=4380
$$

$14^{\circ \prime}$ JJ 360° SAT $16^{\circ} \mathrm{bC}$

MALSAM

	$1 / 9 / 2024$
Date	0463-2023-05
Prof. No.	RUG
Design	V-1
Sheet	

$$
\begin{aligned}
& \text { CENTER: } \\
& \text { Cf } \\
& \begin{array}{l}
C=18.75 \\
A=5
\end{array} \\
& w_{1}=w_{2}=0.06 \\
& P=0 \\
& R_{1}=0.6 \\
& R_{2}=0.9 \\
& \mu=2.4<8.4 \\
& V=0.6<2.2 \\
& \Delta_{T}=0.30=4 / 775 \\
& 14^{\circ} \text { oJ } 360^{\circ} \text { S AT } 16^{\circ} \mathrm{C}
\end{aligned}
$$

VERTICAL ANALYSIS
H 107 - WEST CANT BM
CB
$L=12.5$
$A=3$
$w_{1}=w_{2}=0.06$
$P=0.4$
$R=0.3$

$$
B=-0.2
$$

$R_{2}=1.1$

$$
\beta=16
$$

$n=-1.5$

$$
\begin{aligned}
& \rho=16 \\
& \Delta_{c}=0.01=246515
\end{aligned}
$$

$\operatorname{LsL} 3 / 2 \times 14$

$$
\begin{array}{ll}
\# 108-W E S T & H D R \\
L=7.25 & \\
W=0.6 & R=1.0 \\
R=2.2 & R=82 \\
M=3.9 & \Delta T=0.10=4893 \\
G L 312 \times 9 & \\
\hline \hline
\end{array}
$$

事麻-WESTHDR

$$
\begin{array}{ll}
L=18 & \\
W=0.9 & \quad G=2.0 \\
R=8.1 & \angle=123 \\
M=36.5 & \triangle T=0.59=4 / 364 \\
\text { PSL } 5 / 4 \times 16
\end{array}
$$

HHO-WEST OVERHANG BM

$$
\begin{array}{ll}
L=24.5 & \\
W=(7 / 2)(0.045) & =0.16 \\
R=2.0 \quad & Q=0.6 \\
M=12.0 \quad & Q_{T}=27 \\
& S_{T}=0.41=4726
\end{array}
$$

PR 7×14

$$
\begin{aligned}
& \frac{\text { \# } 111 \text { - WEST CANT BM }}{C 3} \\
& \text { Cf } \\
& L=20 \\
& A=7 \\
& w_{1}=w_{2}=0.06 \\
& P=2.0 \\
& \begin{array}{ll}
P=2.0 \\
R_{1}=-0.2 & \text { SNREOD }=\frac{15.5}{50}(12)(1.67) 26.2
\end{array} \\
& \begin{array}{l}
P=2.0 \\
R=-0.2 \quad \text { SNREOD }=\frac{15.5}{50}(12)(1.67) 26.2
\end{array} \\
& R_{2}=3.8 \\
& \begin{array}{l}
R_{2}=3.8 \\
M=-15.5
\end{array} \\
& \text { Try w } 12 \times 22 \quad s_{x}=25.4>6.2 \text { - } \\
& \Delta_{c}=0.32=24 / 531 \\
& \text { Cf }
\end{aligned}
$$

Wi 122
\qquad
\qquad
\qquad

* 112 -WEST FDR

$$
\begin{array}{ll}
L=9.75 & \\
W=1.1 & G=1.9 \\
R=5.4 & L=152 \\
M=13.1 & O=0.25-4475 \\
G=3 / 2 \times 9 &
\end{array}
$$

\#\#13-WEST HOR
L=8
$\mathrm{W}=0.47$
$\mathrm{fb}=0.26$
$\mathrm{R}=1.9$
$\mathrm{fv}=27$
$\mathrm{M}=3.8$
DELTA =0.02=L/5321
PSL 5-1/4×14

```
\#114-WEST INT
\(L=14\)
\[
\begin{aligned}
& L=14 \\
& w=(38 / 2)(0.045)=0.86
\end{aligned}
\]
\[
R=6.0 \quad \delta=1.5
\]
\[
\mu=21.0 \quad \begin{array}{ll}
R=0 & \quad \Lambda=0.3 \\
\mu=0.3
\end{array}
\]
\[
\begin{aligned}
& C_{2} 102 \\
& \Delta T=0.31=2 / 543
\end{aligned}
\]
```

Sse $5 \frac{1}{4} \times 14$
\Longrightarrow

MALSAM
TSANG STRUCTURAL ENGINEERING

Tekiela Residence

Mercer Island, WA

Side	North	South
Roof	. 80	1.10
Wall	. 15	. 15
Level 1	. 07	. 07
Foundation	. 30	. 30

South: 1.62 / $2.00(12)=9.8^{\prime \prime}$ Wide Ftg Req'd

Point Loads on the Stem Walls:

Maximum 10 kip point load distributed over $4^{\prime}-0^{\prime \prime}$ of continuous 16^{11} wide footing $=1.88 \mathrm{psf}$ OK

PT LOAPS
$P=1.1 / 2.0=5.5^{\text {中 }} \rightarrow$ USE $2^{1} \sigma^{4} S Q P T_{0}$
$P=14 / 2.0=7.0^{\text {中 }} \rightarrow$ USE $3^{\prime} 0^{4} S Q$ FTO

Tekiela Residence	1/11/2024
Proiect	Date
6520 82nd Ave SE	0463-2023-05
Mercer Island, WA	RJG
	V-3

