STRUCTURAL CALCULATIONS FOR:

TEKIELA RESIDENCE

6520 82ND AVE SE MERCER ISLAND, WA

ARCHITECT: MCCLELLAN ARCHITECTS

JANUARY 30, 2024

DESIGN CRI	TERIA	IBC 20	18											
DEAD LOAD	S													
ROOF														
Composition	2.5 psf	_												
3/4" Plywood	2.4 psf													
TJI @ 16" o.c.	2.3 psf													
Insulation	1.0 psf													
Gyp Board (5/8")	2.8 psf													
MEP	1.5 psf													
Solar Panels	5.0 psf													
		_												
Total	17.5 psf													
Use	20.0 psf													
LIVE LOADS/	OCCUPA	NCY												
Risk Category		I	ROC	F LIVE			FLOC	DR LIV	E			DECK		
Roof Deck	No	- -	Snow =	25 psf	C	Occupa	ncy =	40	psf	00	ccupa	ncy =	60	psf
Common Access	No				Sta	air/Corri	dor =	40	psf					
SEISMIC CRITERIA ASCE 7-16 Ch 11 & Ch 12 WIND CRITERIA ASCE 7-16 Ch 27 Directional Procedure														
Imp. Factor =	1.00	Seism	ic Ht, hn=	• 15 ft			V =	98	mph		K _d =	0.85		
Site Class =	D(Geo)	Т,	Building=	0.2		Expos	ure =	В			G =	0.85		
R Value =	6.5		Ts=	0.6			h =	15	ft		K _{zt} =	1.00	*See K	zt
													Works	neet
Geo. Ground Haz	ard?	No w/AS	CE 11.4.8 E	xcep's	F	Roof Slo	ope =	1	: 12	=	4.8	0		
S _s = 1.4	64	F _a =	1.000	Table 11.4-1										
S ₁ = 0.5	07	F, =	NULL	Table 11.4-2		PRESS	URE			(Cp)				
S _{ms} = 1.4	64 x 2/3 =	= S _{ds} =	0.976	Ean. 11.4-3		Windv	vard V	Vall =	0.8	• • •	Windv	vard F	Roof =	N/A
$S_{m1} = NU$	LL x 2/3 =	= S _{d1} =	NULL	Fan 11 4-4		Leev	vard V	Vall =	-0.5		Leev	vard F	Roof =	N/A
		- 41												
C _{SULT} = 0.1	50					PRESS	URE (PSF)	q = 0.00	256Kz	K _{zt} K _d V	2		
C _{SALL} = 0.1	05					Ht	Kz	qz	0.6xq _z ¹	q _h	P_{WW}	P_{LW}	P_{WALL}	P _{ROOF}
T/Ts= 0.245	≤ 1.5					0-15	0.57	11.9	7.1	7.1	4.9	3.0	7.9	N/A
Okay, Cs Eqn. 12.	8-2					15-20	0.62	13.0	7.8		5.3	3.0	8.3	
						20-25	0.66	13.8	8.3		5.6	3.0	8.7	
SEISMIC WEIG	HT ASCE 7	-16 12.7.2				25-30	0.70	14.6	8.8		6.0	3.0	9.0	
Partitions =	15 psf					30-35	0.73	15.3	9.2		6.2	3.0	9.3	
*Roof weight =	= 1/2 Partition	+ Roof DL	-			35-40	0.76	15.9	9.5		6.5	3.0	9.5	
*Floor weight :	= Full Partitio	n + Floor [DL			40-45	0.79	16.5	9.9		6.7	3.0	9.8	
ROOF	25.0 psf					45-50	0.81	16.9	10.2		6.9	3.0	9.9	
						1	Per IBC	2018 1	605.3.1 Bo	asic Loa	d Combi	nations		
SEISMIC DESIG	GN CATEGO	ORY IE	C 1613.2.5											
Seismic DC	= D													
				Takiala Basida									1/20/2	0004
$> \!$			Project	i ekiela Keside	nce							Date	1/30/2	.024
	122 South	Jackson		6520 82nd Ave	e SE							Proj. No.	0463-20	23-05
MALSAM	Suite 210			Mercer Island,	WA							Desian	RJ	G
TSANG STRUCTURAL	t 206.78	9.6038										Jeanni	DC	1
ENGINEERING	t 206.78	9.0042										Sheet		

6520 82nd Ave SE

Mercer Island, Washington

Address:

98040

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Stiff Soil

Latitude: 47.544584 Longitude: -122.228506 Elevation: 319.0423662034499 ft (NAVD 88)

Wind

Results:

Wind Speed	98 Vmph
10-year MRI	67 Vmph
25-year MRI	74 Vmph
50-year MRI	78 Vmph
100-year MRI	83 Vmph

Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Fri Jan 05 2024

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Site Soil Class:	D - Stiff Soil					
Results:						
S _S :	1.464	S _{D1} :	N/A			
S ₁ :	0.507	T∟ :	6			
F _a :	1	PGA :	0.627			
F _v :	N/A	PGA M:	0.69			
S _{MS} :	1.464	F _{PGA} :	1.1			
S _{M1} :	N/A	l _e :	1			
S _{DS} :	0.976	C _v :	1.393			
Ground motion hazard ar	nalysis may be required	. See ASCE/SEI 7-16 S	ection 11.4.8.			
Data Accessed:	Fri Jan 05 202	24				
Date Source:	USGS Seism	<u>ic Design Maps</u>				

Results:

Ground Snow Load, p _g :	16 lb/ft ²
Mapped Elevation:	319.0 ft
Data Source:	
Date Accessed:	Fri Jan 05 2024
	Statutory requirements of the Authority Having Jurisdiction are not included.

Snow load values are mapped to a 0.5 mile resolution. This resolution can create a mismatch between the mapped elevation and the site-specific elevation in topographically complex areas. Engineers should consult the local authority having jurisdiction in locations where the reported 'elevation' and 'mapped elevation' differ significantly from each other.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Kzt WORKSHEET	Topographic Factor, K _{zt} Figure 26.8-1		
ASCE 7-10 26.8.1		7	
Exposure = B Bldg Height = 15 ft Site Elev = 317 ft		Speed-up x (Downwind) H/2 $HH/2$ $HH/2$ $HH/2$ $HH/2$ $HH/2$ HZ -D RIDGE OR 3-	D AXISYMMETRICAL HILL
PROFILE 1	PROFILE 2	PROFILE 3	NOT USED
Shape = 2-D Escarp	Shape = 2-D Escarp	Shape = 2-D Escarp	
H = 311 ft	H = 307 ft	H = 330 ft	
H/2 = 156 ft	H/2 = 154 ft	H/2 = 165 ft	
L _h = 1742 ft	L _h = 1584 ft	L _h = 2534 ft	
x = 475 ft	x = 158 ft	x = 1742 ft	
z = 15 ft	z = 15 ft	z = 15 ft	
Unobstructed ¹ Yes	Unobstructed ¹ Yes	Unobstructed ¹ Yes	
Above Terrain ² Yes	Above Terrain ² Yes	Above Terrain ² Yes	
Upper Half ³ Yes	Upper Half ³ Yes	Upper Half³ Yes	
Site to Crest Upwind	Site to Crest Upwind	Site to Crest Upwind	
H/Lh ^₄ 0.178	H/Lh ⁴ 0.193813	H/Lh ^₄ 0.130208	
Calc Kzt ? NO	Calc Kzt ? NO	Calc Kzt ? NO	
K ₁ : (K ₁ /H/L _h)	K ₁ : (K ₁ /H/L _h)	K ₁ : (K ₁ /H/L _h)	
Coefficient = 0.75	Coefficient = 0.75	Coefficient = 0.75	
$K_1 = N/A$	$K_1 = N/A$	$K_1 = N/A$	
K ₂ : (1 - x /μL _h)	K ₂ : (1 - x /μL _h)	K ₂ : (1 - x /μL _h)	
μ = 1.5 (Figure 26.8-1)	μ = 1.5 (Figure 26.8-1)	μ = 1.5 (Figure 26.8-1)	
$K_2 = N/A$	$K_2 = N/A$	$K_2 = N/A$	
K_3 : $e^{-\gamma Z/Lh}$	K ₃ : $e^{-\gamma Z/Lh}$	K_3 : $e^{-\gamma Z/Lh}$	
γ = 2.5 (Figure 26.8-1)	γ = 2.5 (Figure 26.8-1)	γ = 2.5 (Figure 26.8-1)	
$K_3 = N/A$	$K_3 = N/A$	$K_3 = N/A$	
$K_{zt} = (1 + K_1 K_2 K_3)^2$	$K_{zt} = (1 + K_1 K_2 K_3)^2$	$K_{zt} = (1 + K_1 K_2 K_3)^2$	
K _{zt} = 1.00	K _{zt} = 1.00	K _{zt} = 1.00	

¹ Hill, ridge, or escarpment is isolated and unobstructed upwind by other similar topographic features of comparable height for 100H or 2 miles (whichever is less) ASCE 7-10 26.8.1

² The hill, ridge, or escarpment protrudes above the height of the upwind terrain features within a 2-mi radlus in any quadrant by a factor of two or more. ASCE 7-10 26.8.1

³ The structure is located as shown in Fig. 26.8-1 in the upper one-half of a hill or ridge or near the crest of an escarpment. ASCE 7-10 26.8.1

4 For H/L $_h$ > 0.5, assume H/L $_h$ = 0.5 for K $_1$ and L $_h$ = 2H for K $_2$ and K $_3$

	Tekiela Residence	1/30/2024
	Project	Date
	6520 82nd Ave SE	0463-2023-05
122 South Jackson		Proj. No.
Suite 210	Mercer Island, WA	RJG
Seattle, WA 98104		Design
t 206.789.6038		DC3
f 206./89.6042		Sheet
	122 South Jackson Suite 210 Seattle, WA 98104 t 206.789.6038 f 206.789.6042	Tekiela Residence Project 6520 82nd Ave SE 122 South Jackson Suite 210 Seattle, WA 98104 t 206.789.6038 f 206.789.6042

Kzt =

1.00

TYPICAL BEAM CASES

CASE #2: (C2)

CASE #3: (C3)

CASE #4: (C4)

1/30/2024 Tekiela Residence Date Project 0463-2023-05 6520 82nd Ave SE 122 South Jackson Proj. No.

MALSAM TSANG STRUCTURAL ENGINEERING Suite 210 Seattle, WA 98104 t 206.789.6038 f 206.789.6042

Mercer Island, WA

RJG Design DC7 Sheet

CASE #6: (C6) W_1 W_2 Î L R_1 R_2 CASE #7: (C7)

*ASSUME CASE 1 FOR ALL BEAMS U.N.O.

 W_1

 L_1

 R_1

 P_1

 W_2

 L_2

 R_2

 P_2

W₃

Α

CASE #5: (C5)

LATERAL ANALYSIS

Seismic:

	1	1	1				1		1
Loval	Area	Unit Wt	Weight	Avg Ht	Wi∙Hi	Distrib.	Shear, V	Uniform	
Level	(ft ²)	(psf)	(kips)	(ft)	(k-ft)	(%)	(kips)	(plf)	
Roof	4900	25	122.50	15	1837.50	100%	12.87	125 / 334	
Totals:			122.50 k		1837.50	100%	12.87 k		
lotais.				:				:	
Base Shear	r:								
$\vee = 0$	C _s x W								
V = 0 =	C _s x W 0.15 x 122.5	5k = 18.38	8 kips (Ultin	nate)					
V = (= =	C _s x W 0.15 x 122.5 0.105 x 122	5k = 18.38 .5k = 12.8	8 kips (Ultin 87 kips (Allc	nate) wable)					
V = 0 = =	C _s x W 0.15 x 122.5 0.105 x 122	5k = 18.38 .5k = 12.8	3 kips (Ultin 37 kips (Allo	nate) owable)					
V = (= =	C₅ x W 0.15 x 122.5 0.105 x 122	5k = 18.38 .5k = 12.8	8 kips (Ultin 87 kips (Allc	nate) wwable)					
∨ = (= =	C ₅ x W 0.15 x 122.5 0.105 x 122	5k = 18.38 .5k = 12.8	8 kips (Ultin 87 kips (Allo	nate) owable)					
V = (= = Id: North-South F	C ₅ x W 0.15 x 122.5 0.105 x 122	5k = 18.38 .5k = 12.8	8 kips (Ultin 87 kips (Allo	nate) wwable)					
V = (= = nd: North-South E	C _s x W 0.15 x 122.5 0.105 x 122 cxposure Trib	5k = 18.38 .5k = 12.8 Wind L	8 kips (Ultin 87 kips (Allo	nate) owable)				Length	Shear
V = (= = nd: North-South E Level	Cs x W 0.15 x 122.5 0.105 x 122 5xposure Trib (ft)	5k = 18.38 .5k = 12.8 Wind L (#/f	8 kips (Ultin 87 kips (Allo 0ad	nate) wable)				Length (ft)	Sheal (kip:

6.18 k

East-West Exposure

Loval	Trib	Wind Load	Length	Shear, V
Level	(ft)	(#/ft)	(ft)	(kips)
Roof	7.5	7.5' x 7.9 = 60 plf	38.5	2.31

LATERAL ANALYSIS (SEISMIC VALUES IN PARENTHESIS) 2 = 6.18 (12.87) NORTH-SOUTH EXPOSURE : 13' - 0" Plate Roof 60(119) 60(116) 60(148) 1.93(3.03) 24 28 Ŧ 7 44 R(k): 0.84(1.62) 2.04(4.41) 0,72(1.78) 1.05(2.03) 12+ 22: 34 9+6.75+12.5=28.25 14.75 L (ft): 134+9.4= 22.8 25.9 26(63) 60(130) 104(205) 41(78) V(#/ft): 37(71) SWG 506 5006 5~6 0.8(1.7) 526 sw: 1.3(2.6) OT: HDU4 HDVH HD: H:W: 13'-0" Plate EAST-WEST EXPOSURE Roof : WINDONLY \$=2,32 60 23.5 15 0.71 = SIMPSON Greense 5(2)+6+ 2(2)=20 0.45 1.16 R'(k): 7.75+6+9+7.5=28.25 46.75 L (ft): 36 29 16 V (#/ft): 5006 Sw6 5006 SW: OT: -HD: H:W: 1/8/2024 **Tekiela Residence** Project Date 0463-2023-05 6520 82nd Ave SE Proj. No 122 South Jackson Suite 210 RJG Mercer Island, WA MALSAM

Seattle, WA 98104 t 206.789.6038 f 206.789.6042

TSANG

STRUCTURAL

Design

Sheet

Ŀ-2

EAST-WEST EXPOSURE (SEISMIC VALUES IN PARENTHESIS)

STRUCTURAL

f 206.789.6042

Sheet

(800) 999-5099 5956 W. Las Positas Blvd., Pleasanton, CA 94588. www.strongtie.com

Job Name: 6520 82nd Ave SE Wall Name: Front Application: Standard Wall on Concrete

Design Criteria:

- * 2018 International Bldg Code
- * Seismic R=6.5
- * 2500 psi concrete
- * ASD Design Shear = 1780 lbs
- * Nominal wall height = 13 ft

Selected Strong-Wall® Panel Solution:

Model	Туре	W (in)	H (in)	T (in)	Sill Anchor	End Anchor Bolts	Total Axial Load (lbs)	Actual Uplift (lbs)
WSWH24x13 WSWH24x13	Wood	24 24	156 156	3.5 3.5	N/A	2 - 1" 2 - 1"	100 100	7884 lb 7884 lb

Actual Shear & Drift Distribution:

Model	RR Relative Rigidity	Actual Shear (lbs)		Allowable Shear (lbs)	Actual / Allow Shear	Actual Drift (in)	Drift Limit (in)
WSWH24x13	0.50	890	≤	3110 OK	0.29	0.19	0.68
WSWH24x13	0.50	890	\leq	3110 OK	0.29	0.19	0.68

Notes:

- 1. Strong-Wall High-Strength Wood Shearwalls have been evaluated to the 2021 IBC/IRC. See www.strongtie.com for additional design and installation information.
- 2. Anchor templates are recommended for proper anchor bolt placement, and are required in some jurisdictions.
- 3. The applied vertical load shall be a concentric point load or a uniformly distributed load not exceeding the allowable vertical load. Alternatively, the load may be applied anywhere along the width of the panel if imposed by a continuous bearing vertical load transfer element such as a rimboard or beam. For eccentric axial loads applied directly to the panel, the allowable vertical load shall be divided by two.
- 4. Panels may be trimmed to a minimum height of $741/_2$ ".

Disclaimer:

It is the Designer's responsibility to verify product suitability under applicable building codes. In order to verify code listed applications please refer to the appropriate product code reports at www.strongtie.com or contact Simpson Strong-Tie Company Inc. at 1-800-999-5099.

(800) 999-5099 5956 W. Las Positas Blvd., Pleasanton, CA 94588. www.strongtie.com

Design Criteria:

- * Stemwall Perimeter
- * 2018 International Bldg Code
- * Seismic R=6.5
- * 2500 psi concrete

Anchor Solution Details:

SIMPSON Strong-Tie

WSWH-AB and WSWH-HSR Extension Application

Anchor Solution Assuming Cracked Concrete Design:

Anchor Solution Assuming Uncracked Concrete Design:

Model	W	de	В	Anchor Bolt	Strength	Model	W	de	В	Anchor Bolt	Strength
WSWH24x13	33	11	20	WSWH-AB	Standard	WSWH24x13	28	10	20	WSWH-AB	Standard

(800) 999-5099 5956 W. Las Positas Blvd., Pleasanton, CA 94588. www.strongtie.com

Notes:

- 1. Anchorage designs conform to ACI 318-19, ACI 318-14 and 318-11 Appendix D with no supplementary reinforcement for cracked and uncracked concrete as noted.
- 2. Anchorage strength indicates required grade of anchor bolt. Standard (ASTM F1554 grade 36) or High Strength (HS)(ASTM A193 Grade B7).
- 3. Seismic indicates Seismic Design Category C though F. Detached 1 & 2 family dwellings in SDC C may use wind anchorage solutions. Seismic anchorage designs conform to ACI 318-11 section D.3.3.4.3 and ACI 318-14 section 17.2.3.4.3 and ACI 318-19 section 17.10.5.3.
- 4. Foundation dimensions are for anchorage only. Foundation design (size and reinforcement) by others. The registered design professional may specify alternate embedment, footing size or anchor bolt.

(800) 999-5099 5956 W. Las Positas Blvd., Pleasanton, CA 94588. www.strongtie.com

VERTICAL ANALYSIS	Typical Units: L = ft, W = klf, P = kip, R = kip, M = k-ft, V = k, Fb = ksi, Fv = psi Units in (Parenthesis) represent Dead Load or 0.6DL (Ωo =2.5)
TYPICAL ROOF FRAMING	#102 - BM ATCENTER
WEST:	L=23.5 w= (31/2)(0.045)=0.70
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{\#102 - B_{M} \text{ ATCLENTER}}{L=23,5}$ $V_{2} = (3 k_{2})(0.045) = 0.70$ $R = 8.2$ $M = 48.3 \text{SREED'D} = \frac{\#3.5}{20}(12)(1.67), P.4$ $Tey with CSS = \pi + 47.5 > 18.47$ $D_{T} = 0.357 = \frac{1}{300}$ $\frac{W12 \times 58}{W_{1} \times W_{2}} = 0.06$ $P = 1.5$ $P_{1} = 0.01$ $P_{2} = 0.75$ $P_{1} = 0.01$ $P_{2} = 0.75$ $P_{1} = 0.01$ $P_{2} = 0.05$ $P_{2} = 0.06$ $P_{2} = 1.5$ $SAT 10^{2}C$ $M = 448$ $S = 5$ $W_{1} = W_{2} = 0.06$ $P_{2} = 4.5$ $SAT 10^{2}C$ CS $L = 18$ $A = 5$ $W_{1} = W_{2} = 0.06$ $P_{2} = 4.5$ $SAT 10^{2}C$ CS $L = 18$ $A = 5$ $W_{1} = W_{2} = 0.06$ $P_{2} = 4.5$ $W_{1} = W_{2} = 0.06$ $W_{1} = 0.29 = 1.637$ $W_{2} = 0.17$ $W_{1} = 0.29 = 1.637$ $W_{2} = 0.14 \times 14$ $W_{2} = 0.62$ $R_{2} = 5$ $W_{2} = 4.12$ $W_{2} = 0.62$ $R_{2} = 5$ $W_{2} = 0.13 = 1.1296$ $R_{2} = 5$ $W_{2} = 0.13 = 1.1296$ $R_{2} = 5$ $W_{2} = 0.13 = 1.1296$ $R_{2} = 5$ $W_{2} = 1.13 = 0.29 = 1.637$ $R_{2} = 0.13 = 1.1296$ $R_{2} = 0.13 = 1.13 = 1.13 = 1.13 = 1.13 = 1.13 = 1.13 = 1.13 = 1.13 = 1.13 = 1.13 = 1.13 = 1.13 = 1.$
<u>BL 5/4 X14</u>	
	Tekiela Residence 1/9/2024
	Project Date 6520 82nd Ave SE 0463-2023-05
MALSAM South Jackson Suite 210	Proj. No. Mercer Island, WA RJG
TSANG t 206.789.6038 STRUCTURAL f 206.789.6042	V-1 Sheet

VERTICAL ANALYSIS Typical Units: L = ft, W = klf, P = kip, R = kip, M = k-ft, V = k, Fb = ksi, Fv = psi Units in (Parenthesis) represent Dead Load or 0.6DL (Ωo=2.5) HIDT-WEST CANT BM #112-WEST HDR C3 L=12.5 L=9.75 A=3 WELN W1=W2=0.06 R= 9.4 M=13.1 P=0.4 R=0.3 20,25-4415 D = -0.2 D = 16 $\Delta c = 0.01 = 246515$ R1= 1.1 M= -1.5 6 - 31/2×9 LSL 3/2×14 #113-WEST HOR L=8 #108-WEST HDR W=0.47 fb=0.26 L=7,25 fv=27 R=1.9 W=0.6 B=1.0 D= 82 AT=0.10=4893 M=3.8 DELTA=0.02=L/5321 R=2.2 M=39 PSL 5-1/4x14 GL 3/2×9 -----#114-WEST INT HOT - WEST HOR L=14 L=18 W= (38/2)(0.045)=0.06 W= 0.9 S= 1.5 C2 102 Q=2.0 Q=123 R26.0 R= 8.1 AT= 0.59: 4/364 M= 21.0 M=36.5 AT= 0.31=4543 PSL 5/4×14 BL 5/4×16 HILD-WEST OVERHANG BM L=24.5 W = (7/2)(0.045) = 0.168=0.6 R= 2.0 A= 27 LAT= 0.41=4726 M= 12.0 PSL 7X14 #111- WEST CANT BM C3 L:20 A=7 W1=W2=0.06 P=2,0 SERECHO = 50 (12) (1.67) 26.2 R.=-0.2 R1- 3.8 Jay W12X22 5x=25.4>6.2-M= -15.5 Ac= 0.32-24/531 W12X22 Tekiela Residence

122 South Jackson Suite 210 Seattle, WA 98104 † 206.789.6038 f 206.789.6042 Project

6520 82nd Ave SE Mercer Island, WA 1/9/2024 Date 0463-2023-05 Proj. No. RJG Design V-2 Sheet

EKTICAL ANALYSIS	Foundation:	2,000 psf Assumed Soil Be
Cida North Cauth		
Roof 80 110		
Wall .15 .15		
Foundation .30 .30		
Totals: 132 162		
10(0)3. 1.52 1.02		
South: 1.62 / 2.00 (12) = 9.8" Wide Ftg Req'd	Use 18" Wide Ftg	
Point Loads on the Stem Walls:		
Maximum 10 kip point load distributed over 4'-0"		
of continuous 16° wide footing = 1.88psf OK		
T LOADS		
P= 11/2.0 = 55 + > USE 2'5'SI	2 PTG	
- 14/2 - 7 - H - 115E 30 50	FIG	
	<u> </u>	
	× *	
	Tekiela Residence	1/11/2024
	Tekiela Residence Project 6520 82nd Ave SE	1/11/2024 Date 0.462.2022.05
122 South Jackson	Tekiela Residence Project 6520 82nd Ave SE	1/11/2024 Date 0463-2023-05 Proj. No.
122 South Jackson Suite 210 Seattle, WA 98104	Tekiela Residence Project 6520 82nd Ave SE Mercer Island, WA	1/11/2024 Date 0463-2023-05 Proj. No. RJG Desian